Webinar on Nuclear Medicine will be hosted on March 29th, 2021. This Webinars aims to support all scientists and scholars from all over the world in delivering their ideas by a safe and successful event. The goal of Nuclear Medicine event is to make international online events as safe as possible from public health risks of the Covid-19 with technical support to host for events. The main objective of this Nuclear Medicine is, “AN INSIGHT VIEW ON ADVANCEMENTS IN NUCLEAR MEDICINE.”
The Nuclear Medicine webinar will accentuation on the on-going examination and revelations in the field of Nuclear Medicine showing a remarkable open door for the specialists, Radiology experts, universities personnel, scientists, registered workers and specialists over the world to meet, organize and recognize new logical advancements in the field.
• Nuclear medicine
Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine imaging, in a sense, is "radiology done inside out" or "endoradiology" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.
• Radiation
Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 eV, which is enough to ionize atoms and molecules and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of helium nuclei, electrons or positrons, and photons, respectively. Other sources include X-rays from medical radiography examinations and muons, mesons, positrons, neutrons and other particles that constitute the secondary cosmic rays that are produced after primary cosmic rays interact with Earth's atmosphere.
Gamma rays, X-rays and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The word "ionize" refers to the breaking of one or more electrons away from an atom, an action that requires the relatively high energies that these electromagnetic waves supply. Further down the spectrum, the non-ionizing lower energies of the lower ultraviolet spectrum cannot ionize atoms, but can disrupt the inter-atomic bonds which form molecules, thereby breaking down molecules rather than atoms; a good example of this is sunburn caused by long-wavelength solar ultraviolet. The waves of longer wavelength than UV in visible light, infrared and microwave frequencies cannot break bonds but can cause vibrations in the bonds which are sensed as heat. Radio wavelengths and below generally are not regarded as harmful to biological systems. These are not sharp delineations of the energies; there is some overlap in the effects of specific frequencies.
• Clinical Nuclear Medicine
Positron emission tomography (PET):
Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body. For example, 18F-FDG is commonly used to detect cancer, NaF-F18 is widely used for detecting bone formation, and oxygen-15 is sometimes used to measure blood flow.
PET is a common imaging technique, a medical scintillography technique used in nuclear medicine. A radiopharmaceutical — a radioisotope attached to a drug — is injected into the body as a tracer. Gamma rays are emitted and detected by gamma cameras to form a three-dimensional image, in a similar way that an X-ray image is captured.
PET scanners can incorporate a CT scanner and are known as PET-CT scanners. PET scan images can be reconstructed using a CT scan performed using one scanner during the same session.
One of the disadvantages of a PET scanner is its high initial cost and on-going operating costs.
• Radiologist
Radiology is the medical discipline that uses medical imaging to diagnose and treat diseases within the bodies of animals, including humans.
A variety of imaging techniques such as X-ray radiography, ultrasound, computed tomography (CT), nuclear medicine including positron emission tomography (PET), fluoroscopy, and magnetic resonance imaging (MRI) are used to diagnose or treat diseases. Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.
The modern practice of radiology involves several different healthcare professions working as a team. The radiologist is a medical doctor who has completed the appropriate post-graduate training and interprets medical images, communicates these findings to other physicians by means of a report or verbally, and uses imaging to perform minimally invasive medical procedures. The nurse is involved in the care of patients before and after imaging or procedures, including administration of medications, monitoring of vital signs and monitoring of sedated patients. The radiographer, also known as a "radiologic technologist" in some countries such as the United States and Canada, is a specially trained healthcare professional that uses sophisticated technology and positioning techniques to produce medical images for the radiologist to interpret. Depending on the individual's training and country of practice, the radiographer may specialize in one of the above-mentioned imaging modalities or have expanded roles in image reporting.
• Radionuclide
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is an atom that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are powerful enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single element the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.
Radionuclides occur naturally or are artificially produced in nuclear reactors, cyclotrons, particle accelerators or radionuclide generators. There are about 730 radionuclides with half-lives longer than 60 minutes (see list of nuclides). Thirty-two of those are primordial radionuclides that were created before the earth was formed. At least another 60 radionuclides are detectable in nature, either as daughters of primordial radionuclides or as radionuclides produced through natural production on Earth by cosmic radiation. More than 2400 radionuclides have half-lives less than 60 minutes. Most of those are only produced artificially, and have very short half-lives. For comparison, there are about 252 stable nuclides. (In theory, only 146 of them are stable, and the other 106 are believed to decay via alpha decay, beta decay, double beta decay, electron capture, or double electron capture.)
• Radioscopy
A radiographic technique, in which the X-ray detector, different from a radiographic film, like a fluorescent screen sensitive to X-rays, coupled with an image intensifier and a video monitor, permits to get real time radiographic images. It can be used to make multi angle radiographs of 3D objects, in order to understand internal structures (statues, mummies, musical instruments, archaeological objects...). It could also be used for studying real time casting process dynamic, through the sides of the mould. As with conventional Radiography, radioscopy is broadly applicable to any material or object through which a beam of penetrating radiation may be passed and detected including metals, stone, ceramics, wood… In addition to the benefits normally associated with radiography, radioscopic examination may be either a dynamic, filmless technique allowing the examination part to be manipulated or imaging parameters optimized while the object is undergoing examination, or a static, filmless technique wherein the examination part is stationary with respect to the X-ray beam. Different types of detection device are now available, like systems with digital detector arrays, or analogical component such as an electro-optic device or an analogical camera. Recent technology advances in the areas of camera techniques, and digital image processing provide acceptable sensitivity for a wide range of applications.
• Single Photon
The photon (Greek: φῶς, phÅs, light) is a type of elementary particle. It is the quantum of the electromagnetic field including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s (or about 186,282 mi/s). The photon belongs to the class of bosons.
Like all elementary particles, photons are currently best explained by quantum mechanics and exhibit wave–particle duality, their behaviour featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units.] Subsequently, many other experiments validated Einstein's approach.
• X-rays
An X-ray, or X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10 nanometres, corresponding to frequencies in the range 30 petahertz to 30 exahertz (30×1015 Hz to 30×1018 Hz) and energies in the range 124 eV to 124 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it on November 8; 1895.He named it X-radiation to signify an unknown type of radiation.
X-ray photons carry enough energy to ionize atoms and disrupt molecular bonds. This makes it a type of ionizing radiation, and therefore harmful to living tissue. A very high radiation dose over a short period of time causes radiation sickness, while lower doses can give an increased risk of radiation-induced cancer. In medical imaging this increased cancer risk is generally greatly outweighed by the benefits of the examination. The ionizing capability of X-rays can be utilized in cancer treatment to kill malignant cells using radiation therapy. It is also used for material characterization using X-ray spectroscopy.
X-rays have much shorter wavelengths than visible light, which makes it possible to probe structures much smaller than can be seen using a normal microscope. This property is used in X-ray microscopy to acquire high resolution images, and also in X-ray crystallography to determine the positions of atoms in crystals.
Meetings Int.  is a worldwide pioneer in delivering top notch gatherings, workshops and symposia in every significant field of science, innovation and medication worldwide receives 400,000+ online visitors with 1000+ sessions which confirm the outstanding pool of new users and visitors creating a platform to build your market place globally. Since its initiation, Meetings Int. has been related with national and global affiliations, organizations and elevated level people, committed to have world class meetings and occasions so its provide  a big platform to show your product and advertise.
The explorer €™s traffic is the benchmark for advertisement and the Nuclear Medicine webinar website is continually dragged in observer over the world. As specify by the Google Analytics, in excess of 12,836 researchers and industrials are visiting to our conference sites.  Waste Management webinar help you to put the spotlight on your brand by advertising with more than 9 million+ readers worldwide and about 5 million+ hits every month on our site. We provide a good opportunity to boost your business on our platform. We offer a range of eye-catching advertising spaces  and branding. Researchers from significant nations including United States, Japan, United Kingdom, India, France, Taiwan, and Germany etc.  Visit our conference site. Subscribers and conference attendees can be your upcoming enthusiastic customers. We maintain high quality and ethical standards in event industry, which makes us unique and better than the rest.
Advertisement banner must be provided by the advertising company and must be in the jpg or jpeg format. The banner must be of high resolution and must not have copyright infringement.
For further queries, connect our Program Manager at
nuclearmedicine2021.mi@gmail.com ; contact@meetingsint.com
You can also connect us via WhatsApp: +65 3158 1626
Meet Experts
Global Networking
Learning In a New Space
New Tips & Tactics
Certification
© 2024-2016 Meetings International. All Rights Reserved