G.B.Pant University of Agriculture & Technology,India
Title: Potential of production of carbon nanotubes from olive oil in Middle East and Gulf Region
Biography:
Abstract
Supercritical fluids (SCFs) are the transient states of matter produced through operating the fluids above their critical point. SCF are inexpensive, non toxic, non flammable media with pressure tunable density, viscosity, diffusivity and surface tension. Density, viscosity and diffusivity are the common physical characteristics of SCFs that they share with liquids (Fig.1). High penetrating power of SCFs is due to their 102 to 103 times greater densities over liquids, 10 to 102 times reduced viscosities over gases and high rate of diffusion @ 10-3 to 10-4 cm2/s times over liquids. Such unique combinations of physical behavior SCFs are effused across solids leading to swelling or solubilzation 1. Among SCF, the most investigated are supercritical carbon dioxide (SCC) and supercritical water (SCW) [2-4]. Judicious variations in temperature and pressure equalizes the densities of liquid and gas phases, restricting phase transitions in SCFs regardless to applied pressure .Applications of SCFs as an alternative media in food processing , chromatography, energy production and drug development was recognized till beginning of 19th century, has now well accepted in processing of materials 6-13.SCFs offers a series of unique methods of particle sizing, development of polymer composites, blends, dispersion of layered silicate, inorganic4, graphitic and magnetic fillers into solvents, monomers and their infusion into polymer matrix at ambient temperatures. Polymer functionalized nanostructurd polyelectrolytes for photovoltaic and energy storage applications are successfully synthesized under supercritically controlled conditions. Highly sensitive functional nanomaterials for antibacterial applications sensor and target delivery of drugs are conveniently synthesized in SCC7-13.The present talk, shall deliver the salient features of SCFs and their applications in particle fabrication, polymerization, preparation of nanocomposites, nanohybrids, nanomaterials for wood preservation, nanocomposites for development of durable composite structures, electroactive nanomaterials for sensing, energy storage, target delivery systems and nanoparticle mediated microbial degradation of commodity plastic materials. Concluding remarks will be presented on simplicity, diversity, and commercial viability of SCFs processing of polymer nanomaterials.