Defence Institute of Advanced Technology,India
Biography:
Mahesh Naik is a Ph.D. Scholar in Mechanical Engineering at Defence Institute of Advanced Technology, Pune, Maharashtra. He has completed B.E in Mechanical Engineering from Sanjivani College of Engineering, Kopargaon, Maharashtra, India (2015) and M.Tech in Manufacturing Engineering from Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat (2017). His Ph.D. research area is Additive Manufacturing of polymer composite for Aerospace applications. He has worked for one year as Assistant Professor at Sandip Institute of Management and Technology, Nashik. Additive manufacturing, optimization of process parameters, mechanical and material characterization of fiber-reinforced polymer composite, and metal additive manufacturing are his research area of interest. He has published more than 15 research papers in National & International Conferences and Journals. He has been granted the International Travel Grant by DST, Govt. of India.
Additive Manufacturing (AM), also known as 3D Printing, has been there for more than two decades and has recently gained importance for manufacturing functional products. AM has excellent developments in recent days with a huge number of applications in industry, automotive, aerospace, medical, architecture, food, fashion, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. In recent periods, AM has gained lot of importance in fabricating composite material. Fused Deposition Modelling (FDM) is one of the promising AM technology used for the fabrication of complex geometry product using continuous fiber reinforced composite material. There is lot of research on effect of fiber orientation on tensile strength of composite materials made using conventional manufacturing processes. It will be interesting and significant to study the effect of fiber orientation (0°, 0°/90°, +45°/-45°) and infill pattern (honeycomb, triangular & rectangular) on tensile strength of additively manufactured continuous fiber reinforced polymer composite. Now-a-days, continuous fiber reinforced thermoplastic composite materials are becoming more important in industrial applications due to inherit advantages such as excellent mechanical performance, recycling and potential lightweight structures. In present study, carbon was used as continuous fiber reinforced material which has high tensile resistance. The FDM based 3D printer named Markforged Mark Two was used to fabricate the test specimen. This work aims to investigate and find out the best combination of fiber orientation and infill pattern that has better tensile strength for additively manufactured polymer composite Further, microstructural analysis was conducted to investigate the fracture mechanism, morphology, and printing quality of the test specimens.